

Institute <u>Energy and Mechanical engineering</u>
Department <u>"Power Engineering"</u>

EDUCATIONAL PROGRAM 6B07122 - «Heat Power Engineering»

the cipher and the name of the educational program

Code and classification of the field of education: **6B07 Engineering,** manufacturing and construction industries

Code and classification of training directions: **6B071 Engineering and Engineering**

Group of educational programs: **B062 Electrical Engineering and Power Engineering**

Level based on NQF: **level 6** Level based on IQF: **level 6**

Study period: 4 years

Amount of credits: 240 ECTS

NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I.SATBAYEV»

The educational program 6B07122 - "Heat power engineering" approved at a meeting of the Academic Council of the Kazakh National Research Technical University named after K.I.Satpayev

Protocol No. 12 from 22.04, 2024.

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of the KazNRTU named after K.I.Satpayev. Protocol No. 6 from 19.04.2024.

The educational program 6B07122 - "Heat power engineering" developed by the academic committee in the direction of "Engineering and Engineering"

Full name	Academic degree/ academic title	Post	Place of work	Signature
AND REAL PROPERTY AND ADDRESS OF THE PARTY AND	D071 "Engineering and	engineering"		
Chairman of the	Academic Committee:	No. 2. Property	NOT THE WAY IN	
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering - Chairman of the Academic Committee	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77056011116	69
Teaching staff:	V. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
Sarsenbayev Yerlan	Doctor of Philosophy PhD	Head of the Department, Associate Professor	Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77053157262	Coff
Hidolda Yerkin	n Candidate of Technical Sciences Professor		Kazakh National Research Technical University named after K.I.Satpayev, NCJS, mobile phone: +77021120211	Az
Representatives	of employers:			
Abdikalykov Galymzhan		General manager		All
Representatives	of students:		ALC: 1911 1130 1 101	
Danko Igor		2nd year doctoral student	Kazakh National Research Technical	Double

after K.I.Satpayev, NCJS, mobile phone: +77053184203

Table of contents

- List of abbreviations and designations
- 1. Description of the educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluating of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program
- 6. Additional educational programs (Minor)

List of abbreviations and designations

EP – educational program

BC – basic competencies

PC – professional competencies

LO – learning outcomes

MOOC – massive open online courses

NQF – National Qualifications Framework

IQF – Industry Qualifications Framework

1. Description of educational program

The educational program is designed to train personnel to work in production workshops and engineering departments of thermal and nuclear power plants, industrial heating boilers and enterprises of the energy, metallurgical, mining and processing, oil and gas industries and in the housing and utilities sector, as well as in production laboratories, energy and environmental expertise, environmental, energy, housing and communal services.

The direction of the specialty and specialization program covers engineering and engineering.

In case of successful completion of the full bachelor's degree course, the graduate is awarded the academic degree "Bachelor of Engineering and Technology in the field of Thermal Power Engineering".

The volume of mathematical, natural science, basic and language disciplines has been increased in the educational program. Profile disciplines have been added, which can be divided into two groups: disciplines on thermal power engineering and disciplines on alternative energy. The result was an educational program that has innovative and practical content and is aimed at implementing the Digital Kazakhstan program.

The educational program provides for the study of the following innovative disciplines:

- thermodynamic cycles of thermal machines and cooling processes energy audit and energy saving at enterprises;
 - solar installations and heat pumps;
 - industrial and domestic thermal power equipment;
 - hydro-gas dynamics of media in thermal power plants;
 - calculation and design of heat and mass transfer equipment;
 - heat supply systems of enterprises;
- heating networks and heat supply systems of enterprises and housing and communal services:
- combined-cycle and gas turbine installations of thermal power plants and nuclear power plants;
 - operation of the main TPP equipment;
 - heat and mass transfer equipment of the enterprise;

In the process of mastering the educational program, a bachelor of Engineering and technology in the field of thermal power engineering should have the following key competencies.

The bachelor must:

have an idea:

- about modern thermal power facilities, about autonomous power sources and renewable energy facilities, about promising areas of energy development;
- on modern approaches to the calculation and design of thermal power systems, as well as to the use of software tools for the management and evaluation of energy systems;

- about modern elements and installations of thermal power systems (devices, apparatuses, equipment, etc.).

To know:

- theoretical and experimental research methods for the purpose of creating new promising areas in the field of thermal power engineering;
- principles of operation, technical characteristics and design features of the developed and used energy facilities;
- standards, methodological and regulatory materials, fundamentals of design, installation and operation of thermal engineering installations of the thermal power industry;
- modern and promising directions of development of heat power and heat technology systems, principles of operation, technical characteristics and design features of the developed and used heat power and heat technology installations and systems;
- determine the thermodynamic properties of substances, calculate the main parameters of the cycles of heat and refrigeration machines, use tables and diagrams of the state of substances.

be able to:

- to develop the principles of organization and design of thermal power plants;
- use application software packages for calculations, modeling and automation of design of thermal power systems;
- use theoretical information on the organization of the technological process of heat and electricity generation at thermal power plants;
- apply methods to increase the economic efficiency of municipal heat power by using new renewable energy sources, methods for calculating heat exchangers, techniques for using heat power equipment and systems;
- to solve the main issues of heating and heat supply systems, design features of internal heat supply systems, heating networks, equipment of heating points;
 - use methods for calculating heat and power supply.
- apply methods and measuring instruments used in the production and consumption of thermal and electrical energy;
- use energy- and resource-saving technologies, conduct a preliminary feasibility study of design calculations;
 - to carry out calculations on the heat consumption of thermal power plants. *have skills:*
- formulate the main technical and economic requirements for the designed heat power systems;
- organization of work on the operation, installation and commissioning of electrical and thermal equipment;
- development and design on the modern element and technical basis of energy systems and individual devices.
- possess modern methods and devices for monitoring and accounting of energy carriers.

- calculate energy losses through heat transfer, radiation, convection, and determine heat losses of various building structures.

During the training, production practices are provided at such enterprises as: NC KEGOC, JSC AZHK, JSC AleS, Almaty Thermal Networks LLP, JSC Kazatomprom, Kazzinc LLP, Karachaganak Petroleum Operating and others.

2. Purpose and objectives of educational program

Purpose of EP: The purpose of the educational program is to teach students general education, basic and specialized disciplines with the achievement of appropriate competencies. Preparation of bachelors with professional knowledge in the design, installation, operation and repair of equipment for thermal and nuclear power plants, power supply sources for industrial enterprises and settlements, who have an idea of the classical and new directions of modern energy and environmental technologies, and are able to apply the knowledge gained in scientific, practical and industrial activities.

Tasks of EP: Theoretical and practical training of highly qualified bachelors of heat power engineering, capable of performing tasks of the entire complex of engineering issues of heat supply, using modern computer technology and introducing new technologies in design.

3. Requirements for evaluating the educational program learning outcomes

Admission to the university is carried out according to the applications of an applicant who has completed secondary, secondary special education in full on a competitive basis in accordance with the points of the certificate issued according to the results of the unified national testing with a minimum score of at least 65 points.

Special requirements for admission to the program apply to graduates of 12 summer schools, colleges, applied bachelor's degree programs, niches, etc. Such applicants must pass diagnostic testing in English, mathematics, physics and special disciplines.

Rules for credit transfer for accelerated (reduced) education based on 12year secondary, secondary technical and higher education

Code	Competence type	Description	Competence result	Responsible									
	Shared												
	(Includes full t	raining with possible additional, o	depending on the level of knowle	edge)									
G1	Communication	- Fugitive monolingual	Full 4-year study with a	Department of									
		oral, written and	minimum of 240 academic	Kazakh and									
		communication skills	loans (of which 120 contact	Russian,									
		- The ability not to	classroom academic credits)	Department of									

		communi-cate fluently with a second language - The ability to use communi-cative communication in different situations - There are basics to acade-mic writing in their native language - Diagnostic language test	with a possible re-recording of loans in the second language where students have an advanced level. The level of language is determined by passing the diagnostic test	English
G2	Mathematical Literacy	- Basic mathematical thinking at the communication level - the ability to solve situational problems on the basis of the mathematical apparatus of algebra and began mathematical analysis - Diagnostic test for mathe-matical literacy in algebra	Full 4-year study with a minimum of 240 academic loans (of which 120 are contact auditary academic loans). With a positive test of diagnostic test, the level of mathematics 1, the negative - the level of algebra and the beginning of the analysis	Mathematics Department
G3	Basic literacy in science disciplines	- A basic understanding of the scientific picture of the world with an understanding of the basic laws of science - Understanding basic hypotheses, laws, methods, drawing conclusions and assessing errors	Full 4-year study with a minimum of 240 academic loans (of which 120 are contact auditary academic loans). With a positive test of diagnostic test level Physics 1, General Chemistry, at negative - the level of the Beginning of Physics and basic basics of chemistry	Departments in the fields of natural sciences
(i.e1 1		Specific	•	1
(includ		re-counting credits depending on to ls, colleges, universities, includin		
S1	Communication	- Fugitive bilingual oral, written and communication skills - The ability not to communi-cate fluently with a third language - writing skills of different styles and genres - skills of deep understanding and interpretation of one's own work of a certain level of complexity (essay) - basic aesthetic and theore-tical literacy as a condition of full perception, interpretation of the original text	Full re-repayment of credits by language (Kazakh and Russian)	Department of Kazakh and Russian
S2	Mathematical Literacy	- Special mathematical thin-king using induction and deduction, generalization and	Re-credit for The Discipline of Mathematics (Calculus) I	Mathematics Department

		specification, analysis and synthesis, classification and systematization, abstraction and analogy - The ability to formulate, substantiate and prove positions - Application of common mathematical concepts, formulas and extended spatial perception for mathematical tasks - Full understanding of the basics of mathematical		
S3	Special literacy in science disciplines (Physics, Chemistry, Biology and Geography)	analysis - A broad scientific percep-tion of the world that suggests an understanding of natural phenomena - Critical perception to understand the phenomena of the world around - cognitive ability to formulate a scientific understanding of the forms of existence of matter, its interaction in nature	Re-credits for Physics I, General Chemistry, General Biology, Introduction to Geology, Introduction to Geodesy; Training practice, etc.	Departments in the fields of natural sciences
S4	English language	 Readiness for further self-learning in English in various fields Ready to gain experience in design and research using English 	Refilort English credits above academic to professional level (up to 15 credits)	Department of English
S5	Computer skills	- Basic programming skills in one modern language - Use software and applications to teach different disciplines	Reset Credits on Discipline Introduction to Information and Communication Technologies, Information and Communication Technologies	Department of Software Engineering
S6	Social and humanitarian competencies and behaviour	- Understanding and understanding the responsibility of every citizen for the development of the country and the world - The ability to discuss ethical and moral aspects in society, culture and science - Critical understanding	Re-credit for Kazakhstan's Modern History (excluding state exam) Re-credit credits for	Department of Public Discipline
PRO	FESSIONAL (include	and the ability to debate on modern scientific hypotheses and theories es reduced education by re-counting	philosophy and other humanities	l of knowledge on
P1		- Critical perception and a deep understanding of professional competencies at		Releasing chair
		level 5 or 6	specialty, engineering ethics,	

		- The ability to discuss and debate professional issues within the framework of the mastered program	robotic technology, automation technology, theoretical basics of electrical engineering, technological measurements and instruments, mathematical basics of control theory, electronic automation devices.	
P2	General Engineering Competencies	 Basic general engineering skills and knowledge, the ability to solve general engineering problems and problems be able to use application packages to process experimental data, solve algebraic and differential equation systems 	Re-credit for general engineering disciplines (engineering graphics, outline geometry, electrical engineering basics, microelectronics basics.)	Releasing chair
Р3	Engineering and computer competencies	- Basic skills in using computer programs and software systems to solve general engineering problems	Re-credit for computer graphics discipline, computer modeling and programming in the MatLab environment.	Releasing chair
P4	Socio-economic competences	 Critical understanding and cognitive ability to reason on contemporary social and economic issues A basic understanding of the economic assessment of research sites and the profitability of projects. 	Re-transfer credits for socio- humanitarian and technical and economic disciplines in the set-off of the electorate cycle	Releasing chair

The university may refuse to re-borrow credits if the low diagnostic level is confirmed or the final grades were lower than A and B.

4. Passport of educational program

4.1. General information

№	Field name	Comments								
1	Code and classification of the field	6B07 Engineering, manufacturing and construction								
	of education	industries								
2	Code and classification of training	6B071 Engineering and Engineering								
	directions									
3	Educational program group	B062 Electrical Engineering and Power engineering								
4	Educational program name	Heat power engineering								
5	Short description of educational	The educational program is designed to train								
	program	personnel to work in production workshops and								
		engineering departments of thermal and nuclear power								
		plants, industrial heating boilers and enterprises of the								
		energy, metallurgical, mining and processing, oil and								

	T	one industrian and in the housing and addition
		gas industries and in the housing and utilities sector,
		as well as in production laboratories, energy and
		environmental expertise, environmental, energy,
		housing and communal services.
		The direction of the specialty and specialization
		program covers engineering and engineering.
		In case of successful completion of the full
		bachelor's degree course, the graduate is awarded the
		academic degree "Bachelor of Engineering and
		Technology in the field of Thermal Power
		Engineering".
		The volume of mathematical, natural science,
		basic and language disciplines has been increased in
		the educational program. Profile disciplines have
		been added, which can be divided into two groups:
		disciplines on thermal power engineering and
		disciplines on alternative energy. As a result, we have
		an educational program that has innovative and
		practical content and is aimed at implementing the
		Digital Kazakhstan program.
6	Purpose of EP	The purpose of the educational program is to teach
		students general education, basic and specialized
		disciplines with the achievement of relevant
		competencies. Theoretical and practical training of
		highly qualified bachelors of heat power engineering,
		capable of performing tasks of the entire complex of
		engineering issues of heat supply, using modern
		computer technology and introducing new
		technologies in design. Preparation of bachelors with
		professional knowledge in the design, installation,
		operation and repair of equipment for thermal and
		nuclear power plants, power supply sources for
		industrial enterprises and settlements, who have an
		idea of the classical and new directions of modern
		energy and environmental technologies, and are able
		to apply the knowledge gained in scientific, practical
		and industrial activities.
7	Type of EP	Current
8	The level based on NQF	level 6
9	The level based on IQF	Level 6
10	Distinctive features of EP	No
11	List of competencies of educational	A - knowledge and understanding:
	program	A1 - methods of building electrical, technological and
		functional schemes for the design of Power
		Engineering systems;
		A2 - current trends in the development of technical
		and technological systems of Power Engineering
		facilities;
		A3 - standards, methodical and regulatory materials
1		
		accompanying the operation, installation and

- B applying knowledge and understanding:
- B1 independent work and offer various options for solving professional problems using theoretical and practical knowledge;
- B2 to organize installation, installation and operation of Electric Power Engineering and thermal systems;
- B3 to organize the collection, storage and processing of information used in the field of professional activity.
- C the formation of judgments:
- C1 about modern Power Engineering industry facilities and process management systems;
- C2 on the application of modern autonomous Power Engineering systems of different categories of consumer approaches;
- C3 about modern technical devices and technological equipment of Power Engineering facilities (devices, devices, conductors, equipment, executive mechanisms, microprocessors, etc.).
- D personal abilities:
- D1 to be an Power Engineering engineer, electrical engineer of the production division of the operation of Power Engineering systems;
- D2 to be a specialist in the maintenance of electrical and thermal networks, and systems;
- D3 to be an engineer of the production unit for the repair of thermal and electrical installations;
- D4 to be able to organize work on setting up Power Engineering and electromechanical plants of industrial enterprises.

Competences at the end of training

- B Basic knowledge, skills andskills:
- B1 is capable of philosophical analysis of social phenomena, personality behavior and other phenomena. I am ready to conduct a philosophical assessment of social phenomena;
- B2 to know and apply in practice the basics of engineering professional ethics;
- B3 to be able to analyze the current problems of the modern history of Kazakhstan.
- P Professional competencies, including in accordance with the requirements of industry professionalstandards:
- P1 is a wide range of theoretical and practical knowledge in the professional field;
- P2 is able to analyze and solve problems on the theory of electrical circuits and heat technology;

- P3 is able to analyze thermal, electrical and installation schemes of technological production. I am ready to install, set up and operate thermal and electrical installations, and systems.
- O Human, social and ethicalcompetences:
- O1 is able to freely use english as a means of business communication, a source of new knowledge in the field of electrical engineering and Power Engineering. I am ready to use the English language in the professional activities in the field of Electric Power Engineering and heat Power Engineering;
- O2 is able to freely master the Kazakh (Russian) language as a means of business communication, a source of new knowledge in the field of electrical engineering and Power Engineering. I am ready to use the Kazakh (Russian) language in professional activities in the field of Electric Power Engineering and heat Power Engineering;
- O3 to know and apply in work and life the basics of applied ethics and ethics of business communication;
- O4 to know and apply the basic concepts of professional ethics;
- O5 to know and apply in practice the "code of conduct of engineer";
- O6 to know and solve the problems of human influence on the environment.
- C Special and Management Competencies:
- C1 self-management and control of work and training processes within the framework of the organization's strategy, policies and objectives, discussion of the problem, reasoning of conclusions and competent operation of information;
- C2 in the field of organizational and management activities: to be the head of the group of the division for the operation, installation and repair of power plants in various industries;
- C3 in the field of experimental research: to be a specialist in experimental research of thermal and electric power facilities;
- C4 *in the field of research*: to be an engineer of a scientific laboratory for the research and development of modern Power Engineering installations and systems in various industries;
- C4 in the field *of design:* to be an engineer in the development and design of electric power plants, and systems in various industries..
- 12 Learning outcomes of educational program:

General standard requirements for graduation and awarding a bachelor's degree: mastering at least 240 academic credits of theoretical training and final diploma work or state exam in specialty.

		Special requirements for graduating from university under this program graduate should know: - theoretical and experimental research methods to create promising new directions in the field of electrical engineering and Power Engineering; - principles of work, specifications and design features of Power Engineering products developed and used; - standards, methodical and regulatory materials,
		design, installation and operation of electrical and thermal installations of the Power Engineering industry; graduate should be able to:
		 develop the principles of the organization and design of Power Engineering companies; use application packages to calculate, model and
		automate Power Engineering systems design; - to formulate the basic feasibility and economic requirements for the Power Engineering systems being projected;
		- to organize the operation, installation and installation of electrical and thermal facilities. Training in this OP is completed by passing the
		state exam in the following disciplines or protection before the GAC diploma project (work).
13	Education form	Daytime
14	Period of training	4 years
15	Amount of credits	240 ECTS
	Languages of instruction	state, Russian
17	Academic degree awarded	Bachelor of Engineering and Technology in OP "6B07122-Heat Power Engineering"
18	Developer(s) and authors:	Sarsenbaev Ye., Umyshev D., Nygymanova A.

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N ₂	Discipline name	Short description of discipline	Amount of			Gei	nerated l	earning	outcome	s (codes))	
	1		credits	PO1	PO2	PO3	PO4	PO5	PO6	PO7	••••	•••••
		•	neral educati quired comp		iplines			l				
3.61	Tp · 1		10				1	ı				
M1	Foreign language Kazakh (Russian) language	The ability to perceive authentic material, convey the main idea, express your point of view using active vocabulary on the topic, giving reasoned arguments. Attention is paid to linguistic	10	+		V						
		competence, the development of the world language, discourse, strategy and the socio-cultural component of subjective knowledge. When teaching the Kazakh language, the peculiarities of the language and national cognitive qualities should be taken into account. The content of the discipline covers socio-cultural, social, household and educational and professional spheres.	10									
M2	Physical Culture	The discipline is aimed at students' acquisition of knowledge in the field of physical culture, the formation of a motivational and value attitude to physical culture, attitudes to a healthy lifestyle, the need for regular physical exercises, the formation of physical culture of the individual, preparation for socio-professional activities, preservation and strengthening of health.	8									
M3	Information and communication technologies	The need to study this discipline is due to the fact that students have a holistic understanding of the use of ICT in various fields of professional activity and be able to use the capabilities of modern information technologies, work with application packages,	5									

			ı		ı	1	1	
		network and web applications. Be able						
		to write programs for various						
		calculations in software shells.						
M4	Modern history of Kazakhstan	This course contributes to the	5					
		formation of knowledge in the field of						
		modern understanding and study of the						
		priorities of national history and the						
		Concept of the formation of historical						
		consciousness in the Republic of						
		Kazakhstan.	5					
	Philosophy	In the course of the course						
		"Philosophy", students will gain						
		knowledge about the stages of						
		philosophy development, about the						
		specifics of Kazakh philosophical						
		thought, get acquainted with the main						
		problems, concepts and categories of	3					
		philosophy.						
	Sociology	The subject of sociology as a science,						
		basic laws, structure, functions; history						
		of the development of sociological						
		thought; social status of the individual,						
		social behavior and social roles; social						
		deviations; mass consciousness and						
		mass actions; social stratification,						
		social institutions, conflicts and the						
		logic of their resolution; sociological						
		research as a tool for cognition of						
		society's problems, preparation and						
		conduct of sociological research						
	Political Science	"Political Science" forms knowledge						
		about the laws and laws of world						
		politics and modern political processes,						
		explaining the essence and content of						
		the policy of national states, on the						
		basis of ensuring national security and						
		the realization of national interests.						
		The study of this course contributes to						
		the understanding of internal and						
		external relations and relations, the						
		main trends and patterns operating in various political systems, the						
		development of objective criteria for						
		the social dimension of politics. The						
		purpose of teaching the course is to						
		study the laws of the formation and						

		functioning of politics, prepare						
		students to participate in the political						
		life of the country, and form an active						
		civic position.						
	Cultural studies	The need to teach this discipline is due						
		to the fact that students have a holistic						
		view of culture as a universal way of a						
		person's attitude to the world, the most						
		important condition for his spiritual						
		development and to teach them to						
		understand the theory and history of	5					
			3					
		culture.						
	Psychology	In modern conditions of the						
		development of society, the role of the						
		psychological content of the						
		management process is increasing.						
		During the course, students will get						
		acquainted with modern ideas about						
		the role and multidimensional content						
		of the psychological component of						
		managerial activity, as well as acquire						
		practical skills in managing the						
		behavior of people in the organization,						
		which they will be able to use in their						
		future professional activities						
M5	The basics of anti-corruption culture	The discipline studies the essence,	5					
		causes, causes of sustainable						
		development of corruption from both						
		historical and modern points of view.						
		Examines the prerequisites and						
		impacts for the development of an anti-						
		corruption culture. Studies the						
		development of anti-corruption on the						
		basis of social, economic, legal,						
		cultural, moral and ethical norms.						
		Studies the problems of the formation						
		of an anti-corruption culture based on						
		the relationship with various types of						
		social relations and various						
		manifestations.						
	Fundamentals of Entrepreneurship and	The discipline studies the basics of						
	Leadership	entrepreneurship and leadership from						
	_	the point of view of science and law;						
		features, problematic aspects and						
		prospects of development; theory and						
		practice of entrepreneurship as a						
		practice of entrepreneurship as a						

		system of economic, organizational and legal relations of business structures; readiness of entrepreneurs for innovative receptivity. The							
		discipline reveals the content of entrepreneurial activity, career stages,							
		qualities, competencies and responsibilities of an entrepreneur,							
		theoretical and practical business							
		planning and economic expertise of							
		business ideas, as well as risk analysis							
		of innovative development,							
		introduction of new technologies and technological solutions.							
	Ecology and life safety	The discipline studies the tasks of							
		ecology as a science, environmental							
		terms, the laws of the functioning of							
		natural systems and aspects of							
		environmental safety in the conditions of labor activity. Monitoring of the							
		environment and management in the							
		field of its safety. Sources of pollution							
		of atmospheric air, surface,							
		groundwater, soil and ways to solve environmental problems; life safety in							
		the technosphere; natural and man-							
		made emergencies							
		·	neral educati		iplines				
			versity comp	onent					
M6	Mathematics	Elements of linear algebra and analytic	5				 		
		geometry. Introduction to mathematical analysis. Differential							
		calculus of a function of one variable							
		and its applications. Integral calculus							
		of a function of one variable and its							
		applications. Differential calculus of a							
		function of many variables. Multiple integrals. Applications. Series theory.							
		Differential equations. Elements of							
		probability theory and mathematical							
		statistics.							
	Physics	Mechanics. Kinematics. Dynamics of a							
		material point and a solid body. Conservation laws. Elements of the							
		special theory of relativity. Elements	5						
		special dicory of feducivity. Elements							

_		T	ı	1		1	ı	1	1	
		of continuum mechanics. Vibrations								
		and waves. Molecular physics and								
		thermodynamics. Statistical physics								
		and thermodynamics. Statistical								
		distributions. Fundamentals of								
		thermodynamics. Transfer phenomena.								
		Real gases. Electricity and magnetism.								
		Electrostatics. Constant electric								
		current. Magnetic field. The								
		phenomenon of electromagnetic								
		induction.								
		•	e of basic dis	_						
			versity comp	onent						
M7	Materials science in thermal power	When studying the discipline, students	5							
	engineering	should learn, as a result of analyzing								
		the operating conditions, to choose a								
		material and a method for								
		manufacturing parts and products								
		using modern technological processes,								
		to choose optimal methods for								
		studying the properties and structure of								
		materials, to determine the mechanical								
		properties of materials, to analyze the								
		structure of materials, to process the								
		experimental results obtained, to								
		analyze technical information in the								
		field of materials science and								
		technology of structural materials.								
		Fundamentals of theoretical and								
		experimental research of processes and								
		equipment of thermal power								
		engineering and heat engineering;								
		theory of development of optimal								
		engineering solutions taking into								
		account limitations, theory of solving								
		inventive tasks; methodology for								
		conducting a preliminary feasibility								
		study of design solutions; the main								
		global trends in the development of								
		low-waste, energy-saving and								
		environmentally friendly resource-								
		efficient technologies in thermal power								
		engineering; criteria for the selection								
		and creation of thermal power								
		-								
		equipment.		l						

M7	Theoretical foundations of thermal engineering	Basic concepts and definitions; laws of ideal gas; mixtures of ideal gases; the first beginning of thermodynamics; the second beginning of thermodynamics; differential equations of thermodynamics; equilibrium of thermodynamic systems and phase transitions; T-S and h-S diagrams, thermodynamic processes of water and water vapor; throttling; exergetic method for calculating performance losses; refrigeration cycles; refrigeration units; humid air; h-d-diagram of humid air; fundamentals of chemical thermodynamics thermochemistry.	5				
	Technical thermodynamics	The first and second principles of thermodynamics. Thermodynamics of ideal and real gas: properties and processes. Characteristic functions and dif. equations of thermodynamics. The third law of thermodynamics. Thermodynamics of stationary mass flow. Thermodynamics of gas and steam-gas mixtures. Thermodynamics of chemically reacting systems, fundamentals of chemical thermodynamics. Thermodynamics of steam and gas cycles. Combined cycles, cycles of steam turbine power plants and cycles of nuclear power plants.	5				
	Thermodynamic cycles of thermal machines and cooling processes Solar Plants and heat pumps	The discipline studies thermodynamic processes occurring in heat engines. In particular, the processes of expansion and compression of gases, cooling and heating. The course studies the thermodynamic cycles of Brighton, Trinkler, Rankin and others. The discipline studies the basics of designing solar installations, i.e. solar generators and collectors, as well as heat pumps	5				

Electrical and Electronics engineering	DC electrical circuits; linear AC	6					
	electrical circuits; three-phase circuits;						
	transients in linear electrical circuits;						
	magnetic circuits; transformers; DC						
	machines; asynchronous, synchronous						
	machines; semiconductor devices -						
	diodes, zener diodes, resistors,						
	transistors, thyristors; integrated						
	circuits; amplifying cascades;						
	operational amplifiers; power						
	amplifiers; electronic generators of						
	harmonic oscillations; pulse devices.						
Boiler Plants and steam generators	Bailer plants and steam generators	5					
	course consists of several parts:						
	Technological scheme of the boiler,						
	Technical characteristics of the fuels						
	and the use of the boiler efficiency,						
	Calculation of the heat of the heating						
	boiler, The structures of the boilers,						
	Calculation of boiler plants hydraulic						
	and aerodynamic, Boilers of industrial						
	and technological systems, Use boilers						
	of industrial enterprises.						
T 1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4					
Industrial and domestic heat and		4					
power equipment	industrial and domestic thermal power						
	equipment is to familiarize students						
	with the work and basic structure of						
	thermal power facilities, main and						
	auxiliary equipment of a thermal						
	power plant, centralized heat supply						
	systems of enterprises and cities and						
	solving problems, studying general						
	equipment. As part of the course, the						
	student studies the basic principles of						
	obtaining and using thermal energy,						
	gets acquainted with the types of						
	household and industrial thermal						
	power equipment, studies the						
	principles of their operation, considers						
	engineering methods of basic						
	structures and calculations, first learns						
	the basic laws, and then the practical						
	application of specific calculation						
	methods.			l			
TT 1 1							
Hydro-gas dynamics of media in thermal power plants	Basic concepts and definitions of hydrodynamics. Basic equations of						

		mechanics of liquids and gases. The						
		concept of a boundary layer. Boundary						
		layer equations. The flow of flat						
		surfaces with a homogeneous limitless						
		flow of liquid. The outflow of liquid						
		through the free slots. The outflow of						
		liquid through the cracks located near						
		the surface. The transition of the						
		laminar flow form to the turbulent one.						
		Flow in round smooth pipes. Currents						
		in rough pipes. Hydro-gas dynamics						
		studies the laws of equilibrium and						
		motion of liquids and gases, which are						
		the basis of the disciplines of the						
		special course of Thermal power						
		Engineering. It is difficult to name any						
		field of engineering activity in which it						
		was not necessary to deal with the						
		movement of liquids or gases and,						
		therefore, not to apply to some extent						
		the laws of mechanics of liquids and						
		gases.						
	Renewable energy	The study of the physical essence of						
		the processes of converting renewable						
		energy sources (RES) into electrical						
		energy and the implementation of the						
		most economical and safe operating						
		conditions for renewable energy plants.						
	Industrial Energy audit and energy	yThe following issues are discussed:	5					
		regulatory framework for energy saving						
	saving							
		and its development trends, contractual						
		relations of consumers with energy						
		supplying organizations and settlement						
		of disputable situations, tariffs and price						
		categories for electric energy, the	<u> </u>					
		structure of a mandatory energy audit						
		and an algorithm for its implementation						
		with the development of a program for						
		energy efficiency hanging and filling in						
1		the energy passport of the consumer of						
		fuel and energy resources.						
		Special attention is paid to the						
		calculation of energy efficiency						
		indicators, the feasibility study of						
		organizational, technical, investment						
		energy saving measures and the						
-	•							

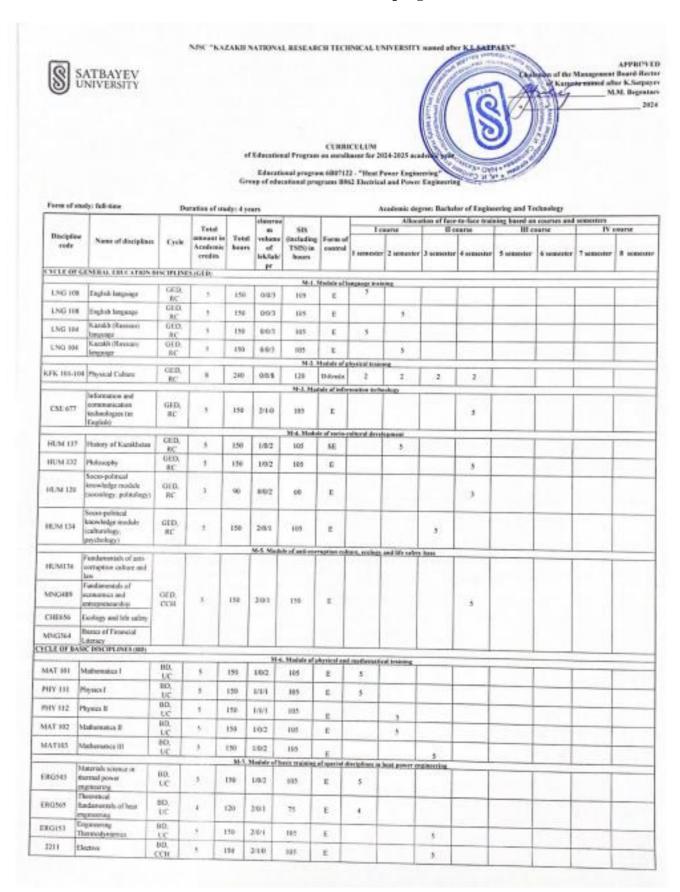
1	development of a program to improve						
	energy efficiency.						
Thermal engineering measurements		5					
	theory and methods of measurement,	3					
and control							
	methods for assessing the accuracy and						
	reliability of measuring instruments						
	and systems, on the state						
	standardization system, on methods for						
	evaluating product quality.						
	Fundamentals of control of						
	technological objects; thermal						
	engineering control objects, their main						
	features; control in start-up, stop and						
	normal operation modes;						
	decomposition of control objectives;						
	automation of control; the concept of						
	dynamic systems and types of dynamic						
	systems; mathematical models of						
	technological control objects;						
Superchargers and heat engines	The discipline deals with various	5					
	superchargers and heat engines,						
	classification of pumps, parameters of						
	pumps and fans.						
Heat and mass exchange equipment in		5					
industrial heat power engeneering	heat and mass transfer equipment are						
	considered, as well as formed the skills						
	of their calculation and selection.						
	Attention is paid to the operation						
	features of various types of heat						
	exchangers; evaporation and						
	desalination plants; auxiliary						
	equipment of heat-consuming plants;						
	Physico-chemical processes in them,						
	and ways of their intensification.						
	Information on heat carriers, their						
	properties and characteristics are						
	given. The methods of calculation of						
	heat and mass transfer equipment are						
	studied, they are: thermal, constructive,						
	verification, hydraulic, strength,						
	technological and economic						
Calculation and design of heat and	Considers the processes of heat and	5					
mass transfer equipment	mass transfer in the apparatus and						
	installations of heat and power						
	engineering. These include boiler						
	installations, waste heat boilers, heat						

	exchangers of various pressures. We						
	consider the design and methods of						
	calculation of recuperative and						
	regenerative heat exchangers,						
	deaerators, evaporation and						
	crystallization plants, drying plants,						
	distillation and distillation plants,						
	absorption and adsorption apparatus.						
Heat supply systems of enterprises	The main heat supply systems, pipeline						
	installation, and insulation materials						
	are considered. The issues of energy						
	saving during transportation of						
	coolants are touched upon.						
Heating networks and heat supply	The basics of laying thermal networks	5					
systems of enterprises and housing and		J					
communal services	locations (channel and non-channel),						
communal services							
	cathodic protection. Open and closed						
	systems, as well as dependent and						
	independent schemes are considered.						
Combined-cycle gas and gas turbine	The basics and types of steam and gas						
installations of thermal power plants	turbines used in the energy sector, the						
and nuclear power plants	structure and thermal circuits,						
	additional devices and equipment of						
	thermal power plants and nuclear						
	power plants are considered. Use and						
	ways to increase efficiency, operating						
	modes, variable operating modes of						
	modern steam and gas turbines						
Tit-i		-					
Transients in power systems	The discipline "Transients in power	5					
	systems" is						
	a variable discipline that forms						
	students' readiness to study						
	theoretical knowledge, practical skills						
	and skills of using algorithms for						
	calculating						
	electromagnetic transients that occur						
	during short circuits and other						
	violations of the normal operation of						
	the energy system, as well as						
	knowledge						
	necessary to understand transients in						
	electromechanical systems and their						
	resistance to change operating modes						
	and deviations of the operating mode						
	from normal.						
Theoretical foundations jf Fuel	Considers the combustion processes of						

		T			1	1		-	
	Combustion and Furnace plants	liquid, solid and gaseous fuels, as well							
		as the associated conditions for optimal							
		combustion. The devices ensuring the							
		burning of various types of fuels are							
		considered. The principles of operation							
		of fuel burning devices, their main							
		design features. Features of burning							
		fuels of various aggregative state.							
		Chemical combustion processes,							
		optimal combustion conditions. Torch,							
		combustion zone, oxidizers.							
	Operation of the main TPP equipment	The course occupies an important	5						
		place among general technical							
		disciplines that determine the							
		theoretical level of professional							
		training of specialists in the modern							
		education system. The main objectives							
		of the course are the formation of							
		knowledge in the field of operation of							
		heat supply equipment; mastering the							
		skills and abilities to assess the							
		functional, quantitative and qualitative							
		characteristics of heat supply devices.							
		The discipline examines the main							
		equipment of thermal power plants -							
		boilers, turbines, pumping equipment,							
		condensers and their operation. The							
		issues of repair and reliability of							
		equipment are touched upon							
	Modeling in energy systems	Teaching students modeling							
	6 1 6 6 7 m	technology and acquiring skills in the							
		application of mathematical objects to							
		solve practical problems.							
	Educational practice	Consolidation of theoretical knowledge	2						
	Educational practice	gained during the study of the basic	2						
		disciplines "Theoretical foundations of							
		heat engineering", "Energy saving in							
		heat power engineering and heat							
		technology", "Introduction to the							
		specialty", "Heat and mass transfer";							
		familiarization with the technological							
		processes of heat energy generation;							
		acquisition of practical skills;							
		collection, systematization of available							
1		information, factual materials for							
		analysis and preparation of a report;							
		anarysis and proparation of a report,							

	T			1	1	1		
		preparation for the study of subsequent specialized academic disciplines.	I					
			. C C'1 . 1'	. 1.				
		•	of profile dis	_	S			
			mponent of c	hoice				
M8	Environmental problems of thermal power engineering	Sources of environmental pollution, the problem of interaction between energy and the environment, the legislative framework of environmental policy of the Republic of Kazakhstan, sources of atmospheric pollution, fundamentals of environmental regulation, general information about the hydrosphere, sources of hydrosphere pollution, anthropogenic soil pollution, the main	5					
	Steam turbines of thermal power plants and nuclear power plants	sources of soil pollution. General information of steam turbines of thermal power plants and nuclear power plants. Working fluid flow equations. Conversion of flow energy taking into account the efficiency of machines. Characteristics of the parameters of the shovel machines. The maximum power of the turbine. Design schemes of machines. Calculation of the strength of the main parts and assemblies of steam and gas turbines.	5					
	Water treatment	As a result of successful mastering of the discipline, the student will know: the main indicators of water quality; methods of preliminary purification of water from coarse and colloidal impurities; methods of reducing alkalinity, water hardness, desalination of water; methods of preventing the formation of deposits, methods of protecting equipment from corrosion; advanced technologies for the treatment of natural waters and contaminated condensates; water and steam quality standards; condensates, mains and make-up water, feed water evaporators; features of the region and	5					

		methods of their treatment; be able to:						
		analyze water with the determination						
		of quality indicators; choose and						
		calculate a rational scheme of water						
		treatment plant; evaluate the main						
		indicators of water quality; possess:						
		skills of independent individual work;						
		experience in using methods of water						
		treatment; skills of using regulatory						
		and technical literature						
	Accumulation of electrical and thermal	The discipline studies technologies	5					
			3					
	energy	that allow generating and storing						
		thermal energy using new and						
-		renewable technologies	_					
	Heating and heating networks	General information and concepts of	5					
		heating and heat supply, energy						
		efficiency of heating, heat						
		consumption, heat supply systems,						
		energy characteristics of gas turbine						
		heating plants, energy characteristics						
		of combined-cycle gas heating plants,						
		hydraulic calculation of heat networks,						
		thermal calculation of heat networks.						
	Electrical and thermal measurements	The discipline "Electrical and thermal	5					
		measurements" is a profile subject,						
		where students receive basic						
		knowledge about the theory, device, as						
		well as their graphic designation						
		according to state standards and the						
		unified system of design documents						
		(ESKD). They also gain knowledge						
		about metrology, classification of						
		measurements and their errors,						
		methods of measuring various						
		electrical and thermal quantities.						
		The purpose of the course is to train						
		specialists in the field of application of						
		thermodynamics, heat exchange						
		methods for the analysis of processes						
		of heat and mass transfer equipment of						
		thermal power plants and other						
	II	industrial enterprises.						
	Heat and mass transfer equipment of	Examines the processes of heat and						
	the enterprise	mass transfer in heat power equipment						
		and installations. These include boiler						
		installations, waste heat boilers, heat						


	exchangers of various pressures.						
Combined-cycle gas and gas turbine installations of thermal power plants and nuclear power plants II Thermal machines and GTU	structure and thermal circuits, additional devices and equipment of thermal power plants and nuclear power plants are considered. Use and ways to increase efficiency, operating modes, variable operating modes of modern steam and gas turbines. The discipline deals with various superchargers and heat engines, classification of pumps, parameters of						
Selected Chapters of	pumps and fans. The discipline presents the theoretical	5					
Aerohydrodynamics	foundations of the construction of aerodynamic research, the main issues of aerodynamics.						
Engineering ecology	Contamination by radioactive elements during the operation of thermal power plants. The impact of pollution on living organisms, vegetation and the environment. Measures to limit emissions of harmful substances into the atmosphere. Reduction of sulfur dioxide emissions. Flue gas desulfurization. Methods for reducing nitrogen oxide emissions. Flue gas purification from nitrogen oxides. Maximum permissible emission concentrations. The impact of thermal power plants on the hydrosphere. problems of wastewater, water of hydrosol removal, ash and slag waste. Methods of wastewater treatment. Reduction of harmful emissions when using new combustion technologies. Calculation of the emission of pollutants during fuel combustion in boiler units of the boiler house. Calculation of emissions of harmful substances into the atmosphere during fuel combustion in boiler houses.						
Heat production technology in industry	The discipline studies the main	5					
	equipment involved in the production of thermal energy. Students will get						

High-potential steam production technology in thermal power plants	acquainted with the principles of operation of boiler houses, heating networks, heating points. Technological scheme of a steam boiler. Combined power plants. Technical characteristics of fuels and the efficiency of their use in the boiler. Combustion of gaseous, liquid fuel. The gorenje of a pulverized coal torch in the furnaces of steam generators.						
	Heat exchange in boiler units. Thermal calculation and layout of steam boilers. The design of steam boilers. Energy steam boilers. Hydrodynamics of closed, open hydraulic systems. Environmental problems of fuel combustion						
Operation of thermal power plants	The discipline studies the basics of operation of heat engineering equipment, in particular steam boilers, turbines, turbine condensers.						
Sources and systems of heat supply of enterprises and housing and communal services	systems of heat supply, i.e. thermal power plants and boiler houses. The issues of heat supply of industrial enterprises and apartment buildings are being studied.						
Calculation and design of heat supply systems	The discipline studies the calculations of heat supply systems, heat exchange apparatuses, heat points, as well as steam and hot water boilers	5					
Calculation and design of combined- cycle gas installations	The discipline studies the design features of systems operating on the steam and gas cycle. The discipline studies calculation methods for gas and steam turbines, as well as waste heat boilers.						
Production practice I	Consolidation of theoretical knowledge gained during the study of the basic disciplines "Technological measurements and automation system", "Technology of thermal insulation and building materials", "Applied thermophysics", "Low temperature physics"; familiarization with the technological processes of	2				+	

		1				1	1	1	1	1		
		heat and electric energy generation;										
		collection, systematization of available										
		information, factual materials for										
		analysis and preparation of a report;										
		preparation for the study of subsequent										
		core academic disciplines.										
	Production practice II	Consolidation of theoretical	3									
	Farmer Farmer 12	knowledge gained during the study of										
		the basic disciplines "Technological										
		measurements and automation										
		system", "Technology of thermal										
		insulation and building materials",										
		"Applied thermophysics", "Low										
		temperature physics"; familiarization										
		with the technological processes of										
		heat and electric energy generation;										
		collection, systematization of available										
		information, factual materials for										
		analysis and preparation of a report;										
		preparation for the study of subsequent										
		core academic disciplines.										
		Cycle	of profile dis	cipline	S							
		Uni	versity comp	onent								
M9	Preparation and writing of a thesis	Consolidation of theoretical	6									
1,12	(project)	knowledge, skills and abilities	j	V								
	(project)	acquired in the process of studying at										
		the university and in previous types of										
		professional practice, as well as the										
		formation of a specialist, preparation										
		of a student for passing the state										
		comprehensive exam in the specialty										
		and for the implementation of a										
		diploma project (work).										
	Defense of the thesis (project)		6									
1		Cvcle	of profile dis	cipline	S					· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	mponent of c	_								
M10	Military training	Formation of students' understanding of	<u> </u>									
	,,	service in the Armed Forces of the										
		Republic of Kazakhstan and knowledge										
		of the basics of military affairs. To										
		prepare students for service in the										
		Armed Forces of the Republic of										
1		Kazakhstan on the basis of solid	,			1	Ì	i .	1	I	İ	
		assimilation of theoretical knowledge of	' i									

initial military training so that, being					
called up for military service in the					
Armed Forces of the Republic of					
Kazakhstan, graduates could adapt to the					
conditions of military service in a short					
time and master the weapons and					
military equipment entrusted to them.					

5. Curriculum of educational program

CCA109	the thoras if project	199		100					-	-					- 8
ECA189	Writing and defense of	FA.	1										1		1 0
AAPIRO	Production practice II	CC.	- 151			94-9	Module of	Soil ethicasi	100				- 3		
		PD,	1								-		-	-	-
4306 AAP103	Production greation I	PD.	2	1		- 23					2				- 3
	Elective	PD;		150	201	105	E								
4705	Sloctive	PD.	3	150	20/1	105	11								,
4304	Electric	FD, CCH		150	2/9/1	109	E	1							.5
4303	Electric	PD, CCH	2	159	2/01	100	E							3	
4302	Bective	PO; CCH	0.	1119	2012	120	E							6	
3500	Decree	PD. CCH		128	201	79							4		
3305	Elective	PD. CCH	18	190	201	105	F						3		
ERG563	Power and electrotechnical equipment	PD; LC	+	126	201	75	t							4	
ERG571	electric and thornical energy	PD, LIC	4	120	201	79	E								
ERG570	Water Treatment Accountainton of	tc		380	202	120	E							170	
	realisar power piperts.	PD,		10000	200	200	E							6	-
ERG542	Secure turbines Heat power plants and	PO,		150	038	165	E					5			
EllG569	Environmental Issues in Heat Fower	PD, UC	*	150	2/1/0	105	E		03000			5			
CLEOFF	ROPLE DISCIPLISES (H				MA No	tate of people	rrienal dive	gilines in hea	promote de la constanta	ering.					
AAPITI	Educational practice	BO. UC	1					1	2	- 5					
3209	Hective	ECH CCH	3	330	201	101	Е.							- 5	
3206	Beate	BO, CCH	3	150	2/6/1	101	£						5		
3207	Eleane	ECH BD		160	24/3	103	£								
3206	Electron	BD, CCH	3	150	2.01	103	1.						- 5		
3205	Elective	BD, CCH	.9	190	2/0/1	105	E						22		
ERGISO	Exploracy Equipment in Industrial Heat Power Engineering	BD.	5	150	in	1115	ŧ								
ERG568	lifewers and temple engines Floor and Mana	BO, CC	*	128	1/1/1	75	E								
ENGSH	Thereal engaverses excessioners and control	BO, UC	76	190	201	105	r					. 9			
IRGS47	and Europ-Saving	BD, UC	1	150	2/10	109									
ERG536	Reservable energy Industrial Energy Audit	UC	3	150	2/1/0	101	£								
ERGIO	Energy conversation in host power and hear engineering	HD, UC BD,	3	150	1/1/1	165	E				,				
RG567	Bole Plans and Steam Generalism	BD, UC	1	199	2:10	1105					3				
cactes	Electronic Engineering	DD.	- 0	199	207	120	- 1			+					

Cycle rode		Newbor of continu for the spiler period of sta				
		Paradian Topi	(AC)	The state of	1	
GEB	Carle of greated solutions discussions	11	**	14		
80	5-3979 Of Other Always and		- 47	- 1	.56	
PD	Cycle of peofile sinciplines.		29	31	112	
FA	First for thereford training	- 63	170	-79	207	
		A.		-	1	
	10TAL:	79	110	.71	240	
rector la	for Academic Affairs		3/	1	1	
All the State of the Land	Engineering	-	/	-		
	Head -Power	CS	_			

6. Additional educational programs (Minor)

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of the development of additional educational programs (Minor)
M1 - English;			
M2 - Modern history of Kazakhstan;			
M3 - Physics 1 and 2;			
M4 - Mathematics 1,2,3;			
M5 - Theoretical foundations of electrical engineering;			
M6 – Theoretical foundations of heat engineering;			
M7 - Electric cars.			